Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Burnup importance function introduced to give an insight into the end effect

Okuno, Hiroshi; Sakai, Tomohiro*

Nuclear Technology, 140(3), p.255 - 265, 2002/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In order to facilitate discussions based on quantitative analysis about the end effect, which is often talked about in connection to burnup credit in criticality safety evaluation of spent fuel, we introduced in this paper a burnup importance function. This function shows the burnup effect on the reactivity as a function of the fuel position; an explicit expression of this function was derived according to the perturbation theory. The burnup importance function was applied to the Phase IIA benchmark model that was adopted by the OECD/NEA Expert Group on Burnup Credit Criticality Safety. The function clearly displayed that burnup importance of the end regions increases (1) as burnup, (2) as cooling time, (3) in consideration of burnup profile, and (4) in consideration of fission products.

Journal Articles

Burnup importance function and its application to OECD/NEA/BUC phase II-A and II-C models

Okuno, Hiroshi; Tonoike, Kotaro; Sakai, Tomohiro*

Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 8 Pages, 2002/10

As the burnup proceeds, reactivity of fuel assemblies for light water reactors decreases by depletion of fissile nuclides, especially in the axially central region. In order to describe the importance of the end regions to the reactivity change, a burnup importance function was introduced as a weighting function to a local burnup variation contributed to a reactivity decrease. The function was applied to the OECD/NEA/BUC Phase II-A model and a simplified Phase II-C model. The application to Phase II-A model clearly showed that burnup importance of the end regions increases as burnup and/or cooling time increases. Comparison of the burnup importance function for different initial enrichments was examined. The application result to the simplified Phase II-C model showed that the burnup importance function was helpful to find the most reactive fuel burnup distribution under the conditions that the average fuel burnup was kept constant and the variations in the fuel burnup were within the maximum and minimum measured values.

Journal Articles

A Method to calculate sensitivity coefficients of reactivity to errors in estimating amounts of nuclides found in irradiated fuel

; Suyama, Kenya; *

Journal of Nuclear Science and Technology, 35(3), p.240 - 242, 1998/03

 Times Cited Count:1 Percentile:15.05(Nuclear Science & Technology)

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1